Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differential Equations exercise 21.11 question 20 maths

Answers (1)

Answer:  y=\frac{x}{x+1}(x+\log x-1)

Given: x(x+1) \frac{d y}{d x}-y=x(x+1)

To find: We have to show that the curve which satisfies x(x+1) \frac{d y}{d x}-y=x(x+1)  and passes through \left ( 1,0 \right )

Hint: Use linear differential equation to solve.

Solution: x(x+1) \frac{d y}{d x}-y=x(x+1)

Dividing by  x(x+1)

        =\frac{d y}{d x}-\frac{y}{x(x+1)}=1        [This is a linear differential equation]

Comparing with \frac{d y}{d x}+P y=Q   we get

        P=\frac{1}{x(x+1)}, Q=1

\text { Now If }=e^{\int P d x}

        \begin{aligned} &=e^{-\int \frac{1}{x(x+1)} d x} \\\\ &=e^{-\int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x} \\\\ &=e^{-(\log x-\log x+1)} \end{aligned}

        \begin{aligned} &=e^{-\log \left(\frac{x}{x+1}\right)} \\\\ &=e^{\log \left(\frac{x}{x+1}\right)^{-1}} \quad\quad\quad\left[e^{-\log x}=\log x^{-1}\right] \end{aligned}

        =\left(\frac{x}{x+1}\right)^{-1} \quad \quad \quad\left[e^{\log x}=x\right]

        =\frac{x+1}{x}

So, the solution is given by

        \begin{aligned} &=y(I f)=\int Q(I f) d x+C \\\\ &=y \times\left(\frac{x+1}{x}\right)=\int \frac{x+1}{x} d x+C \\\\ &=\left(\frac{x+1}{x}\right) y=\int \frac{x}{x} d x+\int \frac{1}{x} d x+C \end{aligned}

        \begin{aligned} &=\left(\frac{x+1}{x}\right) y=\int 1 d x+\int \frac{1}{x} d x+C \\\\ &=\left(\frac{x+1}{x}\right) y=x+\log x+C \ldots(i) \end{aligned}

Since curve passes through the point \left ( 1,0 \right ) it satisfies the equation of the curve

        =\left(\frac{1+1}{1}\right) 0=1+\log 1+C

        =0=1+0+C \quad[\log 1=0]

        =C=-1

Substituting value of C in equation (i) we get

        \begin{aligned} &=\left(\frac{x+1}{x}\right) y=x+\log x-1 \\\\ &=y=\left(\frac{x}{x+1}\right)(x+\log x-1) \end{aligned}

Hence the required equation for the curve is found.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads