Explain solution RD Sharma class 12 chapter Differential Equations exercise 21.11 question 24 maths
Answer:
Given: A curve is such that the length of the perpendicular from the origin in the tangent at any point P of the curve is equal to the abscissa of P.
To find: The differential equation of the curve also we we have to find the curve
Hint: if the differential equation is homogeneous then put
Solution: we have
It is a homogeneous differential equation
[Taking x common on right hand side]
Integrating on both sides we get
Differentiating with respect to x
Let be the point where tangent passes through origin and length is equal to . So, equation of tangent at is
Length of perpendicular as tangent from origin is
Hence, is the required curve.