Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 21 Differential Equations Exercise Revision Exercise Question 25 Maths Textbook Solution.

Answers (1)

Answer:\frac{\cos ^{5}}{5}-\frac{\cos ^{3}x}{3}+\left ( x-1 \right )e^{x}+C

Hint:  Apply integration by parts method and formula of\int u\; v\: dx

Given:\frac{dy}{dx}=\sin ^{3}x\cos ^{2}x+xe^{x}

Solution:\frac{dy}{dx}=\sin ^{3}x\cos ^{2}x+xe^{x}

         \Rightarrow \int dy=\int \left ( \sin ^{3}x\cos ^{2}x+xe^{x} \right )dx        (integrate both sides)

        \Rightarrow \int y=\int \sin ^{3}x\cos ^{2}xdx+\int xe^{x}dx

        \Rightarrow y=I_{1}+I_{2}

I_{1}=\int \sin ^{3}x\cos ^{2}xdx

=\int \left ( 1-\cos ^{2}x \right )\cos ^{2}x\sin xdx

Let \cos x=t

        \Rightarrow d \mathrm{t}=-\sin \mathrm{x} \mathrm{d} \mathrm{x} \quad \text { (diff. w.r.t. } \mathrm{x})

I_{1}=-\int t^{2}\left ( 1-t^{2} \right )dt

=\int \mathrm{t}^{2}\left(\mathrm{t}^{2}-1\right) \mathrm{dt}=\int \mathrm{t}^{4}-\mathrm{t}^{2} \mathrm{dt} \\

            \Rightarrow \mathrm{I}_{1}=\frac{\mathrm{t}^{5}}{5}-\frac{\mathrm{t}^{8}}{3}+\mathrm{c}_{1} \\

            \Rightarrow \mathrm{I}_{1}=\frac{\cos ^{5} \mathrm{x}}{5}-\frac{\cos ^{8} \mathrm{x}}{3}+\mathrm{c}_{1}

      Now,I_{2}=\int xe^{x}dx

\begin{aligned} &\Rightarrow \mathrm{I}_{2}=x \int \mathrm{e}^{x} \mathrm{dx}-\int \mathrm{e}^{\mathrm{x}} \mathrm{dx} \\ &{\left[\because \int \mathrm{uvd} \mathrm{x}=\mathrm{u} \int \mathrm{v} \mathrm{d} \mathrm{x}-\int\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{u} \int \mathrm{v} \mathrm{d} \mathrm{x}\right) \mathrm{dx}\right]} \\ &\Rightarrow \mathrm{I}_{2}=x \mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)+\mathrm{c}_{2} \\ &\text { Now, } \mathrm{y}=\mathrm{I}_{1}+\mathrm{I}_{2} \\ &\Rightarrow \mathrm{y}=\frac{\cos ^{5} \mathrm{x}}{5}-\frac{\cos ^{8} \mathrm{x}}{3}+\mathrm{c}_{1}+(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2} \\ &\Rightarrow \mathrm{y}=\frac{\cos ^{5} \mathrm{x}}{5}-\frac{\cos ^{8} \mathrm{x}}{3}+(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+\mathrm{c}\left(\because \mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{c}\right) \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads