Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths Class 12 Chapter 21 Differential Equation Exercise 21.10 Question 36 subquestion (v) textbook solution.

Answers (1)

Answer : y=\frac{1}{2} \log x+\frac{c}{\log x}

Give : (x \log x) \frac{d y}{d x}+y=\log x

Hint : Using \int \frac{1}{x}dx

Explanation : (x \log x) \frac{d y}{d x}+y=\log x

Divide by x\; \log\; x

           \frac{d y}{d x}+\frac{y}{x \log x}=\frac{1}{x}

This is a first order linear differential equation of the form

       \begin{aligned} &\frac{d y}{d x}+P y=Q \\ &P=\frac{1}{x \log x} \text { and } Q=\frac{1}{x} \end{aligned}

The integrating factor If  of this differential equation is

       \begin{aligned} &I f=e^{\int P d x} \\ &=e^{\int \frac{1}{x \log x} d x} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\log x=t, \frac{1}{x} d x=d t\right] \\ &=e^{\int \frac{1}{t} d t} \\ &=e^{\log t} \end{aligned}

         \begin{aligned} &=e^{\log (\log x)} \; \; \; \; \; \; \; \; \; \quad\left[e^{\log x}=x\right] \\ &=\log x \end{aligned}

Hence, the solution of the differential equation is

          \begin{aligned} &y(I f)=\int Q I f d x+C \\ &=y \log x=\int \frac{1}{x} \log x d x+C \\ &=y \log x=\frac{\log ^{2} x}{x}+C \quad\left[\int x d x=\frac{x^{2}}{2}\right] \\ &=y=\frac{1}{\log x}\left(\frac{\log ^{2} x}{2}+C\right) \end{aligned}

            \begin{aligned} &=y=\frac{\log ^{2} x}{2 \log x}+\frac{C}{\log x} \\ &=y=\frac{\log x}{2}+\frac{C}{\log x} \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads