Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths Class 12 Chapter 21 Differential Equation Exercise Revision Exercise (RE) Question 64 Subquestion (iii) textbook solution.

Answers (1)

Answer : \tan ^{-1} y=x+\frac{x^{3}}{3}+c

Hint               : You must know the rules of solving differential equation and integration

Given             \frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)

Solution       : \frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)

                       \frac{1}{1+y^{2}} d y=\left(1+x^{2}\right) d x

Integrating both sides,

            \begin{gathered} \int \frac{1}{1+y^{2}} d y=\int\left(1+x^{2}\right) d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int \frac{1}{1+y^{2}} d y=\tan ^{-1} y+c\right] \\ \end{gathered}

                        \tan ^{-1} y=x+\frac{x^{3}}{3}+c

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads