Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differential Equations exercise 21.11 question 25 maths textbook solution

Answers (1)

Answer: y^{2}=4 x

Given: Distance between foot of ordinate of the point of contact and the point of intersection of tangent and x \text {-axis }=2 x

To find: we have to find the equation of curve which passes through the point \left ( 1,2 \right )

Hint: Use equation of tangent at  P(x, y) \text { is }(Y-y)=\frac{d y}{d x}(X-x)

Solution: Equation of tangent at P(x,y)

Put Y=0

        \begin{aligned} &=-y=\frac{d y}{d x}(X-x) \\\\ &=-y \frac{d x}{d y}=X-x \\\\ &=X=x-y \frac{d x}{d y} \end{aligned}

Let co-ordinate of   B=\left(x-y \frac{d x}{d y}, 0\right)

Given distance between foot of ordinate of the point of contact and the point of intersection of tangent and \mathrm{x} \text {-axis }=2 x \text { i.e. } B C=2 x

        =\sqrt{\left(x-y \frac{d x}{d y}-x\right)^{2}+(0)^{2}}=2 x            [Distance formula  =\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}]

        \begin{aligned} &=\sqrt{(-1)^{2}\left(y \frac{d x}{d y}\right)^{2}}=2 x \\\\ &=\sqrt{1\left(y \frac{d x}{d y}\right)^{2}}=2 x \end{aligned}

        \begin{aligned} &=y \frac{d x}{d y}=2 x \\\\ &=\frac{d x}{x}=2 \frac{d y}{y} \end{aligned}        [Separating variables]

Integration on both sides we get

        =\int \frac{dx}{x}=2 \int \frac{d y}{y}

        \begin{aligned} &=\log x=2 \log y+\log C \ldots(i) \end{aligned}

It passes through \left ( 1,2 \right )

        \begin{array}{ll} =\log 1=2 \log 2+\log C \\\\ =0=2 \log 2+\log C & {[\log 1=0]} \end{array}

        \begin{aligned} &=-2 \log 2=\log C \\\\ &=\log (2)^{-2}=\log C \quad\left[2 \log x=\log x^{2}\right] \\\\ &=\log \frac{1}{4}=\log C \end{aligned}

Using antilogarithm

        =C=\frac{1}{4}

Substituting the value of C in equation (i) we get

        \begin{aligned} &=\log x=2 \log y+\log \left(\frac{1}{4}\right) \\\\ &=\log x=\log y^{2}+\log \left(\frac{1}{4}\right) \end{aligned}

        \begin{aligned} &=\log x=\log \frac{y^{2}}{4} \\\\ &=x=\frac{y^{2}}{4} \\\\ &=y^{2}=4 x \end{aligned}

Hence y^{2}=4 x is the equation of the curve.

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads