Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 21 Differential Equation Exercise 21.10 Question 9

Answers (1)

Answer:   4 x y=2 x^{2} \log |x|-x^{2}+C

Hint: To solve this equation we will use differentiation method.

Give:  \frac{d y}{d x}+\frac{y}{x}=\log x

Solution:  \frac{d y}{d x}+\frac{y}{x}=\log x

\frac{d y}{d x}+P y=Q

\begin{aligned} &P=\frac{1}{x^{\prime}} Q=\log x \\ & \end{aligned}

I\! f=e^{\int \frac{1}{x} d x} \\

=e^{\log x} \\

=x \\

y I\! f=\int Q I\! f d x \\

y x=\int x \log x d x+C

\begin{aligned} &=\log x \frac{x^{2}}{2}-\int \frac{1}{x} \frac{x^{2}}{2} d x+C \\ & \end{aligned}

x y=\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x+C \\

=\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+C \\

=y=\frac{x \log x}{2}-\frac{x}{4}+\frac{C}{x} \\

=4 x y=2 x^{2} \log x-x+C

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads