Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 21 Differential Equations Exercise 21.9 Question 39 Maths Textbook Solution.

Answers (1)

Answer: \frac{x^{2}}{2y^{2}}=log\mid y\mid

Given:\frac{dy}{dx}=\frac{xy}{x^{2}+y^{2}}

To find: we have to find the solution of given differential equation.

Hint: we will put y=vx\: and\: \frac{dy}{dx}=v+x\frac{dv}{dx}

Solution: we have,

\frac{dy}{dx}=\frac{xy}{x^{2}+y^{2}}

\frac{dy}{dx}=\left ( \frac{1}{\frac{x}{y}+\frac{y}{x}} \right )            ...(i)

It is homogeneous equation.

put y=vx\: and\: \frac{dy}{dx}=v+x\frac{dv}{dx}

So,

\begin{aligned} &v+x \frac{d v}{d x}=\left(\frac{1}{\frac{1}{v}+v}\right) \\ &\Rightarrow x \frac{d v}{d x}=\frac{x}{1+v^{2}}-v \\ &\Rightarrow x \frac{d v}{d x}=\frac{v-v-v^{3}}{1+v^{2}} \\ &\Rightarrow x \frac{d v}{d x}=\frac{-v^{3}}{1+v^{2}} \end{aligned}

Separating the variables and integrating both side we get

\begin{aligned} &-\left(\frac{1+v^{2}}{v^{3}}\right) d v=\frac{d x}{x} \\ &\Rightarrow \int\left(-\frac{1}{v^{3}}-\frac{1}{v}\right) d v=\int \frac{d x}{x} \\ &\Rightarrow \frac{1}{2 v^{2}}-\log |v|=\log |x|+c \end{aligned}

Putting v=\frac{y}{x}

\begin{aligned} &\Rightarrow \frac{x^{2}}{2 y^{2}}-\log \left|\frac{y}{x}\right|=\log |x|+c\\ &\Rightarrow \frac{x^{2}}{2 y^{2}}=\log |x|+\log \left|\frac{y}{x}\right|+c\\ &\Rightarrow \frac{x^{2}}{2 y^{2}}=\log |y|+c \end{aligned}            ...(ii)

It is given that y=1 when x=0

Putting y=1, x=0 in equation (ii) we get

\begin{aligned} &\Rightarrow 0=\log (1)+c \\ &\Rightarrow c=0 \\ \end{aligned}

Putting value of c in equation (ii) we get

\begin{aligned} &\Rightarrow \frac{x^{2}}{2 y^{2}}=\log |y| \end{aligned}

This is required solution.

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads