Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differential Equations exercise 21.7 question 17 maths textbook solution

Answers (1)

Answer: \log \left(y+\sqrt{1+y^{2}}\right)\left(x+\sqrt{1+x^{2}}\right)=C

Hint: Separate the terms of x and y and then integrate them.

Given: \sqrt{1+x^{2}} d y+\sqrt{1+y^{2}} d x=0

Solution: \sqrt{1+x^{2}} d y+\sqrt{1+y^{2}} d x=0

        \begin{aligned} &-\sqrt{1+x^{2}} d y=\sqrt{1+y^{2}} d x \\\\ &\frac{d y}{\sqrt{1+y^{2}}}=-\frac{d x}{\sqrt{1+x^{2}}} \end{aligned}

          Integrating both sides

        \begin{aligned} & \int \frac{d y}{\sqrt{1+y^{2}}}=-\int \frac{d x}{\sqrt{1+x^{2}}} \end{aligned}

        \text { Let } I=\int \frac{d x}{\sqrt{1+x^{2}}}

        Put

        x=\tan \theta

        d x=\sec ^{2} \theta d \theta

        \begin{aligned} &I=\int \frac{1}{\sqrt{1+\tan ^{2} \theta}} \sec ^{2} \theta d \theta \\\\ &=\int \frac{1}{\sqrt{\sec ^{2} \theta}} \sec ^{2} \theta d \theta \\\\ &\left(\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}\right) \end{aligned}

        \begin{aligned} &I=\int \sec \theta d \theta \\\\ &=\log |\sec \theta+\tan \theta| \\\\ &\tan \theta=x \& \sec \theta=\sqrt{1+\tan ^{2} \theta}=\sqrt{1+x^{2}} \\\\ &I=\log \left|x+\sqrt{1+x^{2}}\right|+c \end{aligned}       

        Similarly,\int \frac{1}{\sqrt{1+y^{2}}}=\log \left|y+\sqrt{1+y^{2}}\right|+c

        Hence,

        \begin{aligned} &\log \left|y+\sqrt{1+y^{2}}\right|=-\log \left|x+\sqrt{1+x^{2}}\right|+c \\\\ &\log \left|y+\sqrt{1+y^{2}}\right|+\log \left|x+\sqrt{1+x^{2}}\right|=c \\\\ &\log \left(y+\sqrt{1+y^{2}}\right)\left(x+\sqrt{1+x^{2}}\right)=c \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads