Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Differential Equations exercise 21.7 question 34

Answers (1)

Answer: \log |y|=\frac{2 x^{3}}{3}+x^{2}+2 x+2 \log (x-1)+c

Hint: Separate the terms of x and y and then integrate them.

Given: (x-1) \frac{d y}{d x}=2 x^{3} y

Solution: (x-1) \frac{d y}{d x}=2 x^{3} y

        \begin{aligned} &\Rightarrow \frac{d y}{y}=\frac{2 x^{3}}{(x-1)} d x \\\\ &\Rightarrow \frac{d y}{y}=\frac{2\left((x-1)\left(x^{2}+x+1\right)+1\right)}{(x-1)} d x \\\\ &\Rightarrow \frac{d y}{y}=2\left(x^{2}+x+1+\frac{1}{x-1}\right) d x \end{aligned}

          Integrating both sides

        \int \frac{d y}{y}=2\left[\int x^{2} d x+\int x d x+\int 1 d x+\int \frac{1}{x-1}\right] d x

        \begin{aligned} &\log |y|=2\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+\log |x-1|\right]+c \\\\ &\log |y|=\frac{2 x^{3}}{3}+x^{2}+2 x+2 \log (x-1)+c \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads