Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 3 Subquestion (i) Maths Textbook Solution.

Answers (1)

Answer:\frac{2\pi }{3}
Hints:
The principal value branch of the function \cot ^{-1} is\: (0, \pi )
The principal value branch of the function \sec^{-1} \: is\: [0, \pi ] - \left \{ \frac{\pi }{2} \right \} 
The principal value branch of the function cosec -1 is \left [ \frac{-\pi }{2} ,\frac{\pi }{2}\right ] - \left \{ 0 \right \}     
We will find all the principal values between these intervals
Given:  \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) - cosec^{-1}\left ( -2 \right ) + \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )
Solution:
\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) - cosec^{-1}\left ( -2 \right ) + \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )                                                           \cdot \cdot \cdot \cdot (i)
Let us first solve for \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )
Let   x=\ cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )                                             \cdot \cdot \cdot \cdot \left ( ii \right )
\cot\: x = \frac{1}{\sqrt{3}}
\cot\: x = \cot\left (\frac{\pi }{3} \right ) \; \; \; \; \; \; \; \; \; \; \left [\cot\frac{\pi }{3}= \frac{1}{\sqrt{3}} \right ]
x = \frac{\pi }{3}
\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3}                                                                              {from equation (ii)}
The principal value branch of \cot^{-1} is\: (0, \pi )
\because \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3} \: \epsilon\: (0, \pi )
Therefore principal value of  \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )  is  \frac{\pi }{3}                                                             \cdot \cdot \cdot (iii)
Let us solve for   cosec^{-1}\left ( -2 \right )
Let  y = cosec^{-1}\left ( -2 \right )                                                                                                \cdot \cdot \cdot (iv)
cosec\: y = - 2
cosec\: y = - cosec\frac{\pi }{6} \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \left [ cosec\: \frac{\pi }{6}=2 \right ]
cosec\: y = cosec\left ( \frac{-\pi }{6} \right )        
y = -\frac{\pi }{6}
cosec^{-1}\left ( -2 \right ) = -\frac{\pi }{6}                                                                 {from equation (iv)}
The principal value branch of cosec ^{-1} \: is \: [\frac{-\pi }{2},\frac{\pi }{2} ] -\left \{ 0 \right \}
\because cosec^{-1}\left ( -2 \right ) = -\frac{\pi }{6} \: \epsilon \: \left [ \frac{-\pi }{2}, \frac{\pi }{2} \right ]-\left \{ 0 \right \}
Therefore principal value of  cosec^{-1}\left (-2 \right ) is\: \frac{-\pi }{6}                                                      … (v)
Let us solve for  \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )
Let  z = \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )\; \; \; \; \; \; \; \; \; \; \cdot \cdot \cdot (vi)
\begin{aligned} &\sec z=\frac{2}{\sqrt{3}}\; \; \; \; \;\; \; \; \; \left [ \sec \left ( \frac{\pi }{6} \right )= \frac{2}{\sqrt{3}} \right ] \\ &\sec z=\sec \frac{\pi}{6} \\ &z=\frac{\pi}{6} \\ &\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{6} \end{aligned}                                                                    {from equation (vi)}
The principal value branch of the function\sec ^{-1} is[0, \pi ] - \left \{ \frac{\pi }{2} \right \}
\because \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )= \frac{\pi }{6} \: \epsilon\: [0, \pi ] -\left \{ \frac{\pi }{2} \right \}
Therefore the principal value of  \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )\: is\: \frac{\pi }{6}                                                             … (vii)
Now from equation (i) –
\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) - cosec^{-1}\left ( -2 \right ) + \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )
Putting the value of \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) , cosec^{-1}\left ( -2 \right ) \: and\: \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right ) from equations (iii), (v) and (vii) respectively.
\begin{aligned} &=\frac{\pi}{3}-\left(-\frac{\pi}{6}\right)+\frac{\pi}{6} \\ &=\frac{\pi}{3}+\left(\frac{\pi}{6}\right)+\frac{\pi}{6} \\ &=\frac{2 \pi+\pi+\pi}{6} \end{aligned}
\! \! \! \! \! \! \! \! \! = \frac{4\pi }{6} \\= \frac{2\pi }{3}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads