Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 1 Subquestion (ii) Maths Textbook Solution.

Answers (1)

Answer: \frac{\pi }{6}
Hint: The cot^{-1} function is defined as a function whose domain R and the principal value branch of the function cot ^{-1} is \left ( 0,\pi \right ). Thuscot^{-1}: R \rightarrow (0,\pi )
Given: cot^{-1}(\sqrt{3})
Solution:
Let y = cot^{-1}(\sqrt{3})                                                                                                     \cdot \cdot \cdot 1                                  
cot\: y = \sqrt{3}
cot\: y = cot\frac{\pi }{6} \; \; \; \; \; \; \; \; \; [cot\frac{\pi }{6}= \sqrt{3} ]   
y = \frac{\pi }{6}  
cot^{-1}\sqrt{3}= \frac{\pi }{6}                                                                         (From equation 1)
\because The principal value branch of the functioncot ^{-1} is(0, \pi )
cot^{-1}(\sqrt{3})= \frac{\pi }{6} \: \epsilon \: (0, \pi )
Hence the principal value of cot^{-1} (\sqrt{3}) is  \frac{\pi }{6}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads