Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 3 Inverse Trigonometric Functions Excercise Fill in the Blanks Question 32

Answers (1)

Answer:

                xy> -1

Hint:

You must know the rules of inverse trigonometric function.

Given:

                \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right )

Solution:

                \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right )

Principal range of \tan^{-1} is \left ( \frac{-\pi}{2},\frac{\pi}{2} \right )

Let          \tan^{-1}x=A

                \tan^{-1}y=B

So \tan^{-1}\left ( \tan\left ( A-B \right ) \right ),A-B must be lie in \left ( \frac{-\pi}{2},\frac{\pi}{2} \right )

Now, if both A,B< 0 , then A,B\: \epsilon \left ( \frac{-\pi}{2},0 \right )

A\: \epsilon \left ( \frac{-\pi}{2},0 \right ) and -B\: \epsilon \left ( 0,\frac{-\pi}{2} \right )

A-B\: \epsilon \left ( \frac{-\pi}{2},\frac{\pi}{2} \right )

                \tan^{-1}\left ( \tan\left ( A-B \right ) \right )=A-B

         \Rightarrow \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right )

         \Rightarrow A-B< \frac{\pi}{2}

         \Rightarrow A< \frac{\pi}{2}+B

Apply \tan,

         \Rightarrow \tan A< \tan\left ( \frac{\pi}{2}+B \right )

         \Rightarrow \tan\left ( \frac{\pi}{2}+\alpha \right )=-\cot\alpha

         \Rightarrow \cot\alpha=\frac{-1}{\tan\alpha}

So,          \tan A< \frac{-1}{\tan B}

         \Rightarrow \tan A\tan B< -1

         \Rightarrow \tan B< 0

         \Rightarrow xy> -1

Similarly,

         \Rightarrow \tan A \tan B> -1

         \Rightarrow xy> -1

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads