Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 3 Inverse Trigonometric Functions Excercise Fill in the Blanks Question 29

Answers (1)

Answer:

                7

Hints:

You must know the rules of inverse function.

Given:

                \cot\left ( \frac{\pi}{4} -2\cot^{-1}3\right )

Solution:

                \cot\left ( \frac{\pi}{4} -2\cot^{-1}3\right )

                Let  \cot^{-1}3=a

               \Rightarrow \cot a=3

               \cot \cot\left ( \frac{\pi}{4}-2\left ( \cot a \right ) \right )=\cot \cot\left ( \frac{\pi}{4} -2a\right )

                                                            =\frac{1}{\tan\left ( \frac{\pi}{4}-2a \right )}

                                                            =\frac{1+\tan 2a}{1-\tan 2a}   

                Now \cot a=\frac{1}{3}

                \tan a=\frac{1}{3}

                \tan 2a=\frac{2\tan a}{1-\tan^{2}a}

                             =\frac{2\times\frac{1}{3}}{1-\frac{1}{9}}

                              =\frac{3}{4}

                So,\cot\left ( \frac{\pi}{4}-2\cot^{-1} 3\right )

                      =\frac{1+\frac{3}{4}}{1-\frac{3}{4}}

                      =\frac{4+3}{4}\times\frac{4}{4-3}

                       =7

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads