Get Answers to all your Questions

header-bg qa

need solution for rd sharma maths class 12 chapter inverse trigonometric functions exercise 3.2  question 5 sub question (iii)

Answers (1)

Answer:{\frac{3\pi }{2}}

Hint: The range of the principal value branch of  \cos ^{-1} is \left [ 0,\pi \right ]

Given:    \sin ^{-1}\left ( \frac{-1}{2} \right )+2\cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )

Solution:

Let  \sin ^{-1}\left ( \frac{-1}{2} \right )=x

                                                                                        \sin\; \sin x=\frac{-1}{2}=-\sin\; \sin \left ( \frac{\pi }{6} \right )

           \sin ^{-1}\left ( \frac{-1}{2} \right )=\frac{-\pi }{6}

Let  \cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )=y

    \cos y=\left ( \frac{-\sqrt{3}}{2} \right )=\cos \left ( \pi -\frac{\pi }{6} \right )

        \cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )=\frac{5\pi }{6}

Hence, \sin ^{-1}\left ( \frac{-1}{2} \right )+2\cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right )=\frac{-\pi }{6}+2\left ( \frac{5\pi }{6} \right )

                                                                       =\frac{-\pi }{6}+\frac{10\pi }{6}

                                                                        =\frac{9\pi }{6}

                                                                        =\frac{3\pi }{2}

Principal Value of \sin ^{-1}\left ( \frac{-1}{2} \right )+2\cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right ) is {\frac{3\pi }{2}}.

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads