Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.1 Question 3 Subquestion (iii) Maths Textbook Solution

Answers (1)

Answer:
\left [ -\sqrt{2},1 \right ]\cup \left [ 1,\sqrt{2} \right ]

Hint:
The\: domain \: o\! f \sin^{-1}x \: is \left [ -1,1 \right ].
Given:
f\! \left ( x \right )= \sin^{-1}\sqrt{x^{2}-1}
Explanation:
-1\leq \sqrt{x^{2}-1}\leq 1
x^{2}-1\leq 1 \: [Squaring\: both \: sides]
x^{2}-1+1\leq 1+1
x^{2}\leq 2
-\sqrt{2}\leq x\leq \sqrt{2} \cdot \cdot \cdot \cdot (i)
Also, x^{2}-1\geq 0
x^{2}\geq 1
\Rightarrow x\leq -1 \: and \: x\geq 1 \cdot \cdot \cdot \cdot (ii)
From (i) and (ii), the\: value\: o\! f \: x \: lies\: between
1\leq x\leq\sqrt{2} \: and \: -\sqrt{2}\leq x\leq -1
The \: domain \: o\! f \sin^{-1}\sqrt{x^{2}-1} \: is \left [ -\sqrt{2,}-1 \right ]\cup \left [ 1,\sqrt{2} \right ]

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads