Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 3 Subquestion (iii) Maths Textbook Solution.

Answers (1)

Answer: \frac{\pi }{6}
Hints:
The principal value branch of the function cosec ^{-1}\: is\: [ \frac{-\pi }{2}, \frac{\pi }{2}] -\left \{ 0 \right \}      
The principal value branch of the function  \cot^{-1}\: is\: (0, \pi)
Given:     cosec^{-1}\left ( \frac{-2}{\sqrt{3}} \right ) + 2 \cot^{-1}\left ( -1 \right )                                                                       
Solution:
cosec^{-1}\left ( \frac{-2}{\sqrt{3}} \right ) + 2 \cot^{-1}\left ( -1 \right )              \cdot \cdot \cdot (i)                                                                              
Let us first solve for  cosec^{-1}\left ( \frac{-2}{\sqrt{3}} \right )
Let  x = cosec^{-1} \left ( \frac{-2}{\sqrt{3}} \right )          \cdot \cdot \cdot (ii)                                                                                              
cosec\: x = -\frac{2}{\sqrt{3}}
cosec\: x = - \, cosec\: \frac{\pi }{3}
cosec\: x =cosec \left ( \frac{-\pi }{3} \right )    
x=-\frac{\pi }{3}
cosec^{-1} \left ( \frac{-2}{\sqrt{3}} \right )= -\frac{\pi }{3}                                                              [from equation (ii)]
The principal value branch of the function  \sec^{-1} is [0, \pi ] -\left \{ \frac{\pi }{2} \right \}
\because \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right )= \frac{-\pi }{3} \: \epsilon \: [0, \pi ] -\left \{ \frac{\pi }{2} \right \}
Therefore the principal value of  \sec^{-1}\left ( \frac{2}{\sqrt{3}} \right ) is  \frac{-\pi }{3}              \cdot \cdot \cdot (iii)                                           
Now let us solve for  \cot^{-1} (- 1)
Lety = \cot^{-1}\left ( -1 \right ) \; \; \; \; \; \cdot \cdot \cdot (iv)
\cot\: y = - 1 \left [\ cot\left ( \frac{\pi }{4} \right ) = 1 \right ]
\cot\: y = -\cot \frac{\pi }{4}
\cot\: y = \cot \left ( \pi -\frac{\pi }{4} \right ) \; \; \; \; \; \; \; \; \; \; \; \; \; [ \cot\left ( \pi -\theta \right ) = -\ cot\theta ]
\cot\: y = \cot \left ( \frac{3\pi }{4} \right )
y = \frac{3\pi }{4}
\cot^{-1}\left ( -1 \right ) = \frac{3\pi }{4}                                                                                      [from equation (iv) ]
The principal value branch of the \cot^{-1} is ( 0, \pi )
\because \cot^{-1}\left ( -1 \right ) = \frac{3\pi }{4} \: \epsilon \: (0, \pi )
\because Principal value of  \cot^{-1}\left ( -1 \right ) =\frac{3\pi }{4} \cdot \cdot \cdot (v)
Now, from equation (i)
cosec^{-1}\left ( \frac{-2}{\sqrt{3}} \right ) + 2 \cot^{-1}\left ( -1 \right )                                                         
From equation (iii) and (v)
= -\frac{\pi }{3} + 2\times \frac{3\pi }{4}
= -\frac{\pi }{3} + \frac{3\pi }{2}
= \frac{-2\pi+9\pi }{6}
= \frac{7\pi }{6}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads