Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.13 Question 4  Maths Textbook Solution

Answers (1)

Given:
                \cos^{-1}\left ( \frac{4}{5} \right )+\cos^{-1}\left ( \frac{12}{13} \right )
To prove:
\cos^{-1}\left ( \frac{4}{5} \right )+\cos^{-1}\left ( \frac{12}{13} \right )= \cos^{-1}\left ( \frac{33}{65} \right )
Hint:
We will use the formula on L.H.S

\cos^{-1}x+\cos^{-1}y= \cos^{-1}\left [ xy-\left ( \sqrt{1-x^{2}} \right )\left ( \sqrt{1-y^{2}} \right ) \right ]                
Solution:
Taking L.H.S
L.H.S     
        \cos^{-1}\left ( \frac{4}{5} \right )+\cos^{-1}\left ( \frac{12}{13} \right )       

\Rightarrow \cos^{-1}\left [ \frac{48}{65}-\sqrt{1-\frac{16}{25} }\sqrt{1-\frac{144}{169}}\right ]
\Rightarrow \cos^{-1}\left [ \frac{48}{65}-\frac{3}{5}\times \frac{5}{13}\right ]
\Rightarrow \cos^{-1}\left ( \frac{33}{65} \right )
= R.H.S

Hence we get R.H.S.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads