Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12  Chapter Inverse trigromtery functions exercise 3.8 question 3 sub question (ii)

Answers (1)

x=\pm \frac{1}{\sqrt{2}}

Hint:

As we know that the value of\operatorname{cos}\left(\cos ^{-1} x\right) \text { is } x \text { for } x \in[-1,1]

Given:

We have to solve \cos \left(2 \sin ^{-1}(-x)\right)=0 to find the value of x.

Solution:

So, we convert 2\sin ^{-1}(x)  into \cos ^{-1}(x)

\cos \left(2 \sin ^{-1}(-x)\right)=\cos \left(-2 \sin ^{-1} x\right)                                               [\because \sin ^{-1}(-x)=-\sin x]                 

                     =\cos \left(-2 \sin ^{-1} x\right)    …(i)                    [ as, \cos is even function, so  \cos(-x)= \cos x]        

Let’s suppose,

            

           \sin ^{-1} x =\alpha                       …(ii)

           \sin \alpha =x                           …(iii)

                                 

                                                   

Given,   

\cos \left(2 \sin ^{-1}(-x)\right)=0

              \cos \left(2 \sin ^{-1}(-x)\right)=0                    … [ from eqn(i) ]

              \cos 2 \alpha =0                                 …[ using (ii) ]

              1-2 \sin ^2 \alpha =0                               [\cos 2 \alpha =1-2 \sin ^2 \alpha ]

                         \begin{aligned} &1-2 x^{2}=0 \\ &2 x^{2}=1 \\ &x^{2}=\frac{1}{2} \\ &x=\pm \frac{1}{\sqrt{2}} \end{aligned}

              

Therefore, the answer is x=\pm \frac{1}{\sqrt{2}}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads