Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.10 Question 1 Subquestion (i) Maths Textbook Solution.

Answers (1)

Answer: 0
Hint: Check if there is any relation between\sec ^{-1}x  and \cos^{-1}x . Use inverse trigonometric functions properties to solve. ( \therefore \sec^{-1}x = \cos^{-1}\frac{1}{x} )
Given:\cot\left (\sin^{-1}\frac{3}{4}+ \sec^{-1}\frac{4}{3} \right )
Solution: Let replace\sec^{-1}\frac{4}{3}  by \cos^{-1}\frac{3}{4}   because
\therefore \sec^{-1}x = \cos^{-1}\frac{1}{x}
= \cos^{-1}\frac{3}{4}
Now, \Rightarrow \cot\left (\sin^{-1}\frac{3}{4}+ \sec^{-1}\frac{4}{3} \right )
Again by property,\sin^{-1}x+ \cos^{-1}x= \frac{\pi }{2}
Now \Rightarrow \cot\left (\sin^{-1}\frac{3}{4}+ \cos^{-1}\frac{3}{4} \right )
\! \! \! \! \! \! \! \! \! \Rightarrow \cot\frac{\pi }{2}\\ = 0 \; \; \; \; \; \; [\because \cot\frac{\pi }{2}=0]
Hence, \cot\left (\sin^{-1}\frac{3}{4}+ \sec^{-1}\frac{4}{3} \right )= 0
Concept: Properties and relations between inverse trigonometric functions.
Note: Inverse trigonometric functions remember relation between all trigonometric functions. Also, try to remember value of trigonometric functions.   

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads