Get Answers to all your Questions

header-bg qa

Need Solution for R D  Sharma Maths Class 12 Chapter 3 Inverse Trigonomeric Functions Exercise 3.14 Question 5 Maths Textbook Solution.

Answers (1)

best_answer

Answer: \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} xto prove x=\frac{a+b}{1-a b}

Hints: First we will convert L.H.S of the question in \tan ^{-1}

Given: \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x

Explanation:

\begin{aligned} &\sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x \\ &\because 2 \tan ^{-1} a=\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right) \\ &\therefore \sin ^{-1} \frac{2 a}{1+a^{2}}+\sin ^{-1} \frac{2 b}{1+b^{2}}=2 \tan ^{-1} x \end{aligned}

\begin{aligned} &2 \tan ^{-1} a+2 \tan ^{-1} b=2 \tan ^{-1} x \\ &2\left(\tan ^{-1} a+\tan ^{-1} b\right)=2 \tan ^{-1} x \\ &\tan ^{-1} a+\tan ^{-1} b=\tan ^{-1} x \end{aligned}

\tan ^{-1}\left(\frac{a+b}{1-a b}\right)=\tan ^{-1} x                                                                    \left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]

\begin{aligned} &\frac{a+b}{1-a b}=\tan \left(\tan ^{-1} x\right) \\ &\frac{a+b}{1-a b}=x \end{aligned}

Hence it is proved that x=\frac{a+b}{1-a b}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads