Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.4 Question 1 Subquestion (i) Maths Textbook Solution.

Answers (2)

Answer: \frac{3\pi }{4}      
Hint:   The\: range\: o\! f\: the\: principal\: value \: o\! f \sec ^{-1} is\: \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \}
Given:  \sec^{-1}\left (- \sqrt{2} \right )
Solution: Let ,y= \sec ^{-1}\left ( -\sqrt{2} \right )
\sec y= -\sqrt{2}.
W\! e\: know\: that \: \sec \frac{\pi }{4}= \sqrt{2}
\Rightarrow -\sec \left ( \frac{\pi }{4} \right )= -\sqrt{2}
\Rightarrow \sec \left ( \pi -\frac{\pi }{4} \right )
\Rightarrow \sec \left ( \frac{3\pi }{4} \right )
Thus, the\: range\: o\! f \: the\: principal\: value\: o\! f \: \sec ^{-1} is \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \}
\Rightarrow \sec \left ( \frac{3\pi }{4} \right )= -\sqrt{2}
Hence, the\: principal \: value\: o\! f \sec ^{-1} \left ( \sqrt{2} \right )is\frac{3\pi }{4} .

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Answer:\frac{3\pi }{4}
Hint:   The\: range \: o\! f\: the\: principal\: value \: o\! f\sec ^{-1} is \left [ 0,\pi \right ]\left \{ \frac{\pi }{2} \right \}
Given:  \sec ^{-1}\left (- \sqrt{2} \right )
Solution:   y= \sec ^{-1}\left (- \sqrt{2} \right )
\sec y= -\sqrt{2}.
W\! e\: know\: that\sec \frac{\pi }{4} = \sqrt{2}
\Rightarrow -\sec\left ( \frac{\pi }{4} \right ) =- \sqrt{2}
\Rightarrow \sec\left ( \pi - \frac{\pi }{4} \right )
\Rightarrow \sec\left ( \frac{3\pi }{4} \right )
Thus, the\: range\: o\! f \: the\: principal\: value\: o\! f \sec ^{-1} is \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \}
\Rightarrow \sec \left ( \frac{3\pi }{4} \right )= -\sqrt{2}
Hence, the\: principal\: value\: o\! f \sec ^{-1}\sqrt{2}\: \: is\frac{3\pi }{4} .

Posted by

infoexpert27

View full answer