Get Answers to all your Questions

header-bg qa

provide solution for rd sharma maths class 12 chapter inverse trigonometric functions exercise 3.2 question 5 sub question (ii)

Answers (1)

Answer:{\frac{2\pi }{3}}

Hint: The range of the principal value branch of  \cos ^{-1} is \left [ 0,\pi \right ]

Given:    \cos ^{-1}\left ( \frac{1}{2} \right )-2\sin ^{-1}\left ( \frac{-1}{2} \right )

Solution:

Let  \cos ^{-1}\left ( \frac{1}{2} \right )=x

             \cos x=\frac{1}{2}=\cos \left ( {\frac{\pi }{3}}\right )

          \cos ^{-1}\left ( \frac{1}{2} \right )=\frac{\pi }{3}              ....(1)

 Let \sin ^{-1}\left ( \frac{-1}{2} \right )=y

         \sin y=\frac{-1}{2}=-\sin \left ( {\frac{\pi }{6}}\right )

       \sin ^{-1}\left ( \frac{-1}{2} \right )=\frac{-\pi }{6}              .....(2)

From (1) and (2),

     \cos ^{-1}\left ( \frac{1}{2} \right )-2\sin ^{-1}\left ( \frac{-1}{2} \right )=\frac{\pi }{3}-2\left ( \frac{-\pi }{6} \right )

                                                            =\frac{\pi }{3}+\frac{\pi }{3}

                                                            =\frac{2\pi }{3}

\thereforePrincipal value of \cos ^{-1}\left ( \frac{1}{2} \right )-2\sin ^{-1}\left ( \frac{-1}{2} \right )=\frac{2\pi }{3}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads