Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 1 Subquestion (iv) Maths Textbook Solution.

Answers (1)

Answer:\frac{3\pi }{4}
Hint: The \cot ^{-1} function is defined as a function whose domain R and the principal value branch of the function \cot ^{-1} is (0, \pi ). Thus cot ^{-1}: R \rightarrow (0,\pi )
First we will convert  tan\frac{3\pi }{4} into \cot
Given:  cot^{-1}\left ( \tan \frac{3\pi }{4} \right )
Solution:
Let  y= cot^{-1}\left ( \tan \frac{3\pi }{4} \right )                                                                                                                  \cdot \cdot \cdot 1                               
cot\: y= \tan \frac{3\pi }{4}
cot\: y = cot (\frac{\pi }{2}- \frac{3\pi }{2} ) \; \; \; \; \; \; \left [ \because tan\theta = \cot \left ( \frac{\pi }{2}-\theta\right ) \right ]
cot\: y = cot ( \frac{-\pi }{4} )                                                 
cot\: y = - cot \left ( \frac{\pi }{4} \right ) \; \; \; \; [ \because cot\left ( -\theta \right ) = - cot\: \theta ]
cot\: y = cot \left ( \pi -\frac{\pi }{4} \right ) \; \; \; \; \; \; \; \; [ cot\left ( \pi -\theta \right ) = - cot\: \theta ]
cot\: y = cot \left ( \frac{3\pi }{4} \right )
y = \frac{3\pi }{4} 
cot^{-1}\left ( tan\frac{3\pi }{4}\right ) = \frac{3\pi }{4}                                                                      (From equation 1)
\because The principal value branch of the function cot^{-1} is (0, \pi )
cot^{-1}\left ( tan\frac{3\pi }{4} \right ) =\frac{3\pi }{4}\: \epsilon \: (0, \pi )
Hence the principal value of cot^{-1}\left ( tan\frac{3\pi }{4} \right ) is  \frac{3\pi }{4}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads