Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 3 Inverse Trigonometric Functions exercise Very short answer question 17 maths textbook solution

Answers (1)

Answer: \frac{1}{\sqrt{10}}

Given:

\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)

Hint:

\sin ^{-1}(\sin x)=x

Solution:

\begin{array}{l} \cos ^{-1} x=2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}} \\ \tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}} \\ \begin{aligned} \therefore \sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right) &=\sin \left(\frac{1}{2}\left(2 \tan ^{-1} \sqrt{\frac{1-\frac{4}{5}}{1+\frac{4}{5}}}\right)\right) \\ &=\sin \left(\tan ^{-1} \sqrt{\frac{\frac{1}{5}}{\frac{9}{5}}}\right) \\ &=\sin \left(\tan ^{-1} \frac{1}{3}\right) \\ & \end{aligned} \\ \end{array}

                                             \begin{array}{l} =\sin \left\{\sin ^{-1}\left(\frac{\frac{1}{2}}{\sqrt{1+\frac{1}{9}}}\right)\right\} \\\\ =\sin \left\{\sin ^{-1} \frac{1}{\sqrt{10}}\right\} \\\\ =\frac{1}{\sqrt{10}} \end{array}

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads