Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.4 Question 1 Subquestion (iv) Maths Textbook Solution.

Answers (1)

Answer:  \frac{2\pi }{3}
Hint: The range of the principal value of   \sec ^{-1} is \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \}
Given:    \sec ^{-1}\left ( 2\tan \left ( \frac{3\pi }{4} \right ) \right )
Solution:  We know that \tan \left ( \frac{3\pi }{4} \right )= -1
\therefore 2\tan \left ( \frac{3\pi }{4} \right )\Rightarrow 2\times -1
2\tan \left ( \frac{3\pi }{4} \right )\Rightarrow -2
By substituting these values in\sec ^{-1}\left ( 2\tan \left ( \frac{3\pi }{4} \right ) \right ),we get
\sec ^{-1}\left ( -2 \right )
Let ,y= \sec ^{-1}\left ( -2 \right )
\sec \left ( y \right )= -2
-\sec\left ( \frac{\pi }{3} \right )= -2
\Rightarrow \sec\left ( \pi - \frac{\pi }{3} \right )
\Rightarrow \sec\left ( \frac{2\pi }{3} \right )
\thereforeThe range of the principal value of \sec ^{-1} is \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \} and\, \sec \left ( \frac{2\pi }{3} \right )\! =\! -2
\thereforeThe principal value of \sec ^{-1}\left ( 2\tan \left ( \frac{3\pi }{4} \right ) \right )\, is\, \frac{2\pi }{3}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads