Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.4 Question 2 Subquestion (ii) Maths Textbook Solution.

Answers (1)

Answer: \frac{-2\pi }{3}
Hint:The range of the principal value of  \sec ^{-1} is \left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \}
The range of the principal value of  \sin ^{-1} is \left [ \frac{-\pi }{2} ,\frac{\pi }{2}\right ]
Given: \sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )-2\sec ^{-1}\left ( 2\tan \frac{\pi }{6} \right )
Solution: First we solve  \sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )
Let  \, y= \sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )
\Rightarrow \sin y= \left ( \frac{\sqrt{3}}{2} \right )
\Rightarrow -\sin \left ( \frac{\pi }{3} \right )
\RightarrowAs we know \sin \left ( -\theta \right )= -\sin \left ( \theta \right )
-\sin \left ( \frac{\pi }{3} \right )= \sin \left (- \frac{\pi }{3} \right )
The range of the principal value of  \sin ^{-1} is\left [ \frac{-\pi }{2},\frac{\pi }{2} \right ] and \: \sin \left ( -\frac{\pi }{3} \right )= -\frac{\sqrt{3}}{2}
Hence, Principal value is  -\frac{\pi }{3}
Now, we solve 2\tan \left ( \frac{\pi }{6} \right )
Let us assume 2\tan \left ( \frac{\pi }{6} \right )= \theta
We know that  \tan \left ( \frac{\pi }{6} \right )= \frac{1}{\sqrt{3}}
2 \tan \left ( \frac{\pi }{6} \right )= 2\times \frac{1}{\sqrt{3}}
2 \tan \left ( \frac{\pi }{6} \right )= \frac{2}{\sqrt{3}}
Now by substituting these values in \sec ^{-1}\left ( 2\tan \frac{\pi }{6} \right )  we get
\sec ^{-1}\left ( \frac{2}{\sqrt{3}} \right )
Now let   \sec ^{-1}\left ( \frac{2}{\sqrt{3}} \right )= z
\sec z= \frac{2}{\sqrt{3}}
\sec \left ( \frac{\pi }{6} \right )= \frac{2}{\sqrt{3}}
The range of the principal value of \sec ^{-1} is\left [ 0,\pi \right ]-\left \{ \frac{\pi }{2} \right \} and\: \sec \left ( \frac{\pi }{3} \right )= \frac{2}{\sqrt{3}}
Hence, Principal value of  \sec ^{-1}\left ( 2\tan \left ( \frac{\pi }{6} \right ) \right )\, is\, \frac{\pi }{3}
Now, We have
\sec ^{-1}\left ( 2\tan \left ( \frac{\pi }{6} \right ) \right )= \frac{\pi }{3} and\: \sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right ) = -\frac{\pi }{3}
Solving
\sin ^{-1}\left ( \frac{\sqrt{3}}{2} \right )-2\sec ^{-1}\left ( 2\tan \left ( \frac{\pi }{6} \right ) \right )
\Rightarrow -\frac{\pi }{3}-\frac{\pi }{3}
\Rightarrow \frac{-2\pi }{3}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads