Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Inverse Trigonometric Function exercise 3.9 question 2 maths subquestion (i)

Answers (1)

Answer:

            \frac{-24}{7}

Hint:

Get rid of the negative sign by using the formula

        cos^{-1}(-x)=\pi -cos^{-1}(x)

Convert the cos-1 term to a sec-1 term.

Now use the formula

        sec^{2}(x)=1+tan^{2}(x)

        tan(x)=\sqrt{sec^{2}(x)-1}

Concept:

        Inverse Trigonometry

Solution:

        tan(cos^{-1}(\frac{-7}{25}))=tan(\pi -cos^{-1}(\frac{7}{25}))                    [cos^{-1}(-x)=\pi -cos^{-1}(x)]

                                           =-tan(\pi -cos^{-1}(\frac{7}{25}))                [tan(\pi -\theta )=-tan\theta ]

                                           =-tan(sec^{-1}(\frac{25}{7}))                         [cos^{-1}(x)=sec^{-1}(\frac{1}{x})]

                                          =-\sqrt{sec^{2}(sec^{-1}(\frac{25}{7}))-1}           [tan^{2}\theta =sec^{2}\theta -1]

                                         =-\sqrt{\frac{625-49}{49}}              =-\frac{24}{7}

Note:   Try to convert the inner inverse term to the inverse of outer trigo ratio or the trigo ratio that can be related directly to the outer ratio using identities

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads