Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma math class 12 chapter 3 Inverse Trigonometric Functions exercise Very short answer question 30

Answers (1)

Answer: \frac{3 \pi}{4}

Given: \cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)

Hint: Try to solve \cos  function first.

Solution:

          \cos ^{-1}\left(\cos \frac{5 \pi}{4}\right) \neq \frac{5 \pi}{4} \ \ as \ \ \frac{5 \pi}{4}  doesn’t lie in between 0  and 5 \pi

We, have          

\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)=\cos ^{-1}\left\{\cos \left(2 \pi-\frac{3 \pi}{4}\right)\right\}

                                        \begin{array}{l} =\cos ^{-1}\left\{\cos \left(\frac{3 \pi}{4}\right)\right\} \\\\ =\frac{3 \pi}{4} \end{array}

Posted by

infoexpert22

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads