Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 3 Subquestion (iv) Maths Textbook Solution.

Answers (1)

Answer:\frac{-\pi }{12}
Hints: First we will find principal values of  \tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ),\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \: and\: \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )
Given: \tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )
Solution:
\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )              \cdot \cdot \cdot \cdot (i)
Let  x=\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ) \cdot \cdot \cdot \cdot (ii)
\begin{aligned} &\tan x=-\frac{1}{\sqrt{3}} \\ &\tan x=-\tan \frac{\pi}{6} \\ &\tan x=\tan \left(\frac{-\pi}{6}\right) \\ &x=\frac{-\pi}{6} \end{aligned}
 \tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ) = \frac{-\pi }{6}                                                                         [from equation]
The range of principal value branch of \tan^{-1}  is \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]
\because \tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )= \frac{-\pi }{6} \: \epsilon \: \left [ \frac{-\pi }{2},\frac{\pi }{2} \right ]
Hence principal value of  \tan^{-1} \left ( \frac{-1}{\sqrt{3}} \right ) =\frac{-\pi }{6} \cdot \cdot \cdot \cdot (iii)
Now let us solve for  \tan^{-1} \left (- \frac{1}{\sqrt{3}} \right )   
Let  y = \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \cdot \cdot \cdot (iv)
\cot\: x= \frac{1}{\sqrt{3}}
\cot\: x= \cot \left ( \frac{\pi }{3} \right ) \; \; \; \; \; \; \left [ \cot \frac{\pi }{3}= \frac{1}{\sqrt{3}} \right ]
x =\frac{\pi }{3}
\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3}                                                                             {from equation (iv)}
The principal value branch of \cot^{-1} is (0, \pi )
\because \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) = \frac{\pi }{3} \: \epsilon \: (0, \pi )
Therefore principal value of  \cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \: is\: \frac{\pi }{3}
Now let us solve for    \tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right )\right )
Let  z= \tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right ) \right )\cdot \cdot \cdot \left ( vi \right )
\tan\: z= \sin\left ( \frac{-\pi }{2} \right )
\tan\: z = - sin\left ( \frac{\pi }{2} \right ) \; \; \; \; \; \; \; \; \; \left [ \sin \left ( \frac{-\pi }{2} \right )= 1 \right ]
\begin{aligned} &\begin{array}{l} \tan z= -1 \\ \tan z=-\tan \frac{\pi}{4} \end{array} \\ &\tan z=\tan \frac{-\pi}{4} \\ &z=\frac{-\pi}{4} \end{aligned}
\tan^{-1}\left ( \sin\left ( \frac{-\pi }{2} \right ) \right )= \frac{-\pi }{4}
The range of principal value branch of \tan^{-1}\: is\: \left [ \frac{-\pi }{2}, \frac{\pi }{2} \right ]
\because \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right ) = \frac{-\pi }{4} \: \epsilon \: \left [ \frac{-\pi }{2}, \frac{\pi }{2} \right ]
\because The principal value of  \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right ) is \frac{-\pi }{4} \cdot \cdot \cdot \cdot \cdot (vii)
Now from equation (i)
\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right )+\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) + \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right )
Putting the value of\tan^{-1}\left ( \frac{-1}{\sqrt{3}} \right ),\cot^{-1}\left ( \frac{1}{\sqrt{3}} \right ) \; and\: \tan^{-1}\left ( \sin \left ( \frac{-\pi }{2} \right ) \right ) from equations (iii), (v) and (vii) respectively.
\begin{aligned} &=\frac{-\pi}{6}+\frac{\pi}{3}+\left(\frac{-\pi}{4}\right) \\ &=\frac{-\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4} \\ &=\frac{-2 \pi+4 \pi-3 \pi}{12} \end{aligned}
= \frac{-\pi }{12}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads