Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 1 Subquestion (iii) Maths Textbook Solution.

Answers (1)

Answer: \frac{2\pi }{3}
Hint: The cot ^{-1} function is defined as a function whose domain R and the principal value branch of the function cot ^{-1} is (0, \pi ). Thus cot ^{-1}: R\rightarrow \left ( 0,\pi \right )Given:   cot^{-1}\left ( \frac{-1}{\sqrt{3}} \right )
Solution:
Let  y = cot^{-1}\left ( \frac{-1}{\sqrt{3}} \right )                                                                                                          \cdot \cdot \cdot 1                              
cot\: y = \frac{-1}{\sqrt{3}}
cot\: y = - cot\frac{\pi }{3} \; \; \; \; \; \; \left [cot\frac{\pi }{3}= \frac{1}{\sqrt{3}} \right ] 
cot\: y = cot (\pi -\frac{\pi }{3} ) \; \; \; \; \; \; \; \; \; \; \; [ \because cot\left ( \pi -\theta \right ) = - cot\theta ]
y = \frac{2\pi }{3}
cot^{-1}\left (\frac{-1}{\sqrt{3}} \right ) = \frac{2\pi }{3}                                                                           (From equation 1)
\because The principal value branch of the function cot ^{-1} is  (0, \pi )
cot^{-1}\left ( \frac{-1}{\sqrt{3}} \right )= \frac{2\pi }{3}\: \epsilon \: (0, \pi )
Hence the principal value of cot^{-1}\left ( \frac{-1}{\sqrt{3}} \right ) is  \frac{2\pi }{3}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads