Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 3 Inverse Trigonometric Functions Exercise 3.14 Question 2 sub question 1 Maths Textbbok Solution.

Answers (1)

Answer: 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}

Hints: First we will convert \sin ^{-1} \frac{3}{5} into \tan ^{-1} and after that we use the formula of 2 \tan ^{-1} x

2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \quad-1<x<1

Given: 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}

Explanation:

2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}

First we will solve for \sin ^{-1} \frac{3}{5}

let \sin ^{-1} \frac{3}{5}=\theta                                        ........................(1)

\sin \theta=\frac{3}{5}=\frac{P}{H}

By Pythagoras theorem

\begin{aligned} &H^{2}=P^{2}+B^{2} \\ &5^{2}=3^{2}+B^{2} \\ &25=9+B^{2} \\ &B^{2}=25-9 \\ &B^{2}=16 \\ &B=\sqrt{16} \\ &B=4 \end{aligned}

\tan \theta=\frac{P}{B}

\tan \theta=\frac{3}{4} \quad \theta=\tan ^{-1} \frac{3}{4}

From Equation (1)

\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}           ..............(2)

Now L.H.S:

2 \sin ^{-1} \frac{3}{5}

=2 \tan ^{-1} \frac{3}{4}                                 from equation (2)

=\tan ^{-1}\left[\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right]                            \left[-1<\frac{3}{4}<1\right.

=\tan ^{-1}\left[\frac{\frac{3}{2}}{1-\frac{9}{16}}\right]

=\tan ^{-1}\left[\frac{\frac{3}{2}}{\frac{7}{16}}\right]

\begin{aligned} &=\tan ^{-1}\left[\frac{3}{2} \times \frac{16}{7}\right] \\ &=\tan ^{-1}\left[\frac{24}{7}\right] \\ &=R \cdot H . S \end{aligned}

Hence 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads