Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 3 Inverse Trigonometric Functions Exercise 3.14 Question 1 sub question 2 Maths Textbbok Solution.

Answers (1)

Answer: \frac{4-\sqrt{7}}{3}

Hints: First we will convert \sin ^{-1}\left(\frac{3}{4}\right) into \tan ^{-1}

Given:  \tan \left(\frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)\right)

Explanation:

Let \sin ^{-1}\left(\frac{3}{4}\right)=\theta ......(1)

\sin \theta=\frac{3}{4}=\frac{A B}{A C}

In \triangle A B C

A B^{2}+B C^{2}=A C^{2}            (By using Pythagoras theorem)

\begin{aligned} &3^{2}+B C^{2}=4^{2} \\ &9+B C^{2}=16 \\ &B C^{2}=16-9 \\ &B C^{2}=7 \\ &B C=\sqrt{7} \end{aligned}

\begin{aligned} &\cos \theta=\frac{B C}{A C} \\ &\cos \theta=\frac{\sqrt{7}}{4} \end{aligned}

Now

\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}

\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\frac{\sqrt{7}}{4}}{1+\frac{\sqrt{7}}{4}}}

\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{\frac{4-\sqrt{7}}{4}}{\frac{4+\sqrt{7}}{4}}}

\tan \left(\frac{\theta}{2}\right)=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}

\frac{\theta}{2}=\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)

\frac{1}{2} \sin ^{-1} \frac{3}{4}=\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)              from equation (1)

Now, \tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)

=\tan \left(\tan ^{-1}\left(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)\right)                from equation (2)

=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}

On rationalizing we get,

\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]

=\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}} \times \frac{4-\sqrt{7}}{4-\sqrt{7}}}

=\sqrt{\frac{(4-\sqrt{7})^{2}}{16-7}}

\begin{aligned} &=\sqrt{\frac{(4-\sqrt{7})^{2}}{9}} \\ &=\frac{(4-\sqrt{7})}{3} \end{aligned}

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads