Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.10 Question 10 Maths Textbook Solution.

Answers (1)

Answer: 1
Hint: Use \tan^{-1}x + \cot^{-1}x= \frac{\pi }{2}
Given: 5\tan^{-1}x + 3\cot^{-1}x= 2\pi
Here, we have to compute x.
Solution:
As we know,\tan^{-1}x + \cot^{-1}x= \frac{\pi }{2}
Therefore,
\Rightarrow \frac{\pi }{2} - \tan^{-1}x = \cot^{-1}x
\Rightarrow 5\tan^{-1}x + 3\cot^{-1}x= 2\pi
\Rightarrow 5 \tan^{-1}x + 3 (\frac{\pi }{2} - \tan^{-1}x ) = 2\pi
\! \! \! \! \! \! \! \! \! {\Rightarrow }5 \tan^{-1}x - 3 \tan^{-1}x = 2\pi - \frac{3\pi }{2}\\ \Rightarrow 2 \tan^{-1}x = \frac{\pi }{2}\\ \Rightarrow \tan^{-1}x = \frac{\pi }{4}\\ \Rightarrow x = \tan \frac{\pi }{4}\\ \therefore x = 1
Concept: Properties of inverse trigonometric functions.
Note: Value of basic Trigonometric functions should be memorised.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads