Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 2 Maths Textbook Solution.

Answers (1)

Answer:R - \left \{ n\pi , n \: \epsilon \: Z \right \}
Hints: First we will write the domain of \cot\: x and \cot^{-1}\: x respectively. After that we will solve for common domain
Given: f\! (x) = \cot \: x + \cot ^{-1} (x)
Solution:
Let us first solve for cot\: x
\because \cot \: x is defined for  x \: \epsilon \: R - \left \{ n\pi, n \: \epsilon \: z \right \}
\because Domain of  \cot\: x = R - \left \{ n\pi, n \: \epsilon \: z \right \}                                                                        \cdot \cdot \cdot \cdot 1
Let us solve for \cot^{-1}\left ( x \right )
\because\cot^{-1}x is defined for x \: \epsilon \: R
\because Domain of  \cot^{-1}(x) = R                                                                                          \cdot \cdot \cdot \cdot 2
Now to find the domain of f\! (x)  we take the intersection of both equations 1 and 2
(Domain of \cot\: x) \cap (Domain of \cot ^{-1}x)
= R - \left \{ n\pi, n \: \epsilon \: z \right \}
Hence the domain of f\! (x) = \cot\: x + \cot^{-1}x  is  R - \left \{ n\pi, n \: \epsilon \: z \right \}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads