Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 3 Inverse Trigonometric Functions Excercise Fill in the Blanks Question 21

Answers (1)

Answer:

                \frac{\pi}{5}

Hint:

You must know the rules of inverse trigonometric function.

Given:

                \tan^{-1}x+\tan^{-1}y=\frac{4\pi}{5}, then find \cot^{-1}x+\cot^{-1}y

Solution:

Using inverse rule,

                \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2} and

                \tan^{-1}y+\cot^{-1}y=\frac{\pi}{2}

Adding both equations,

 \begin{aligned} &\Rightarrow \quad \tan ^{-1} x+\cot ^{-1} x+\tan ^{-1} y+\cot ^{-1} y=\frac{\pi}{2}+\frac{\pi}{2} \\\\ &\Rightarrow \quad \tan ^{-1} x+\tan ^{-1} y+\cot ^{-1} x+\cot ^{-1} y=\frac{\pi}{2}+\frac{\pi}{2} \\\\ &\Rightarrow \quad \frac{4 \pi}{5}+\cot ^{-1} x+\cot ^{-1} y=\pi \end{aligned}      

\begin{aligned} \Rightarrow & \cot ^{-1} x+\cot ^{-1} y=\pi-\frac{4 \pi}{5} \\\\ \Rightarrow & \cot ^{-1} x+\cot ^{-1} y=\frac{5 \pi-4 \pi}{5} \\\\ \Rightarrow & \cot ^{-1} x+\cot ^{-1} y=\frac{\pi}{5} \end{aligned}        

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads