Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 3 Inverse Trigonomeric Functions Exercise Multiple Choice Questions Question 10 Maths Textbook Solution.

Answers (1)

Answer: 2

Hint: The function range should fulfill the interval.

Given: \sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x)

Solution:

         -\pi \leq x \leq \frac{-\pi}{2}

  For,

         \begin{aligned} &\sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x) \\ &\sqrt{2}|\cos x|=\sqrt{2} \sin ^{-1}(\sin x) \\ &\sqrt{2}(-\cos x)=\sqrt{2}(-\pi-x) \\ &\cos x=\pi+x \end{aligned}

It doesn’t satisfy for any value of x in interval \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)

For, \frac{-\pi}{2} \leq x \leq \frac{\pi}{2}

      \begin{aligned} &\sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x) \\ &\sqrt{2}|\cos x|=\sqrt{2} x \\ &\sqrt{2}(\cos x)=\sqrt{2} x \\ &\cos x=x \end{aligned}

It gives one value of x in interval \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)

For, \frac{\pi}{2} \leq x \leq \pi

      \begin{aligned} &\sqrt{1+\cos 2 x}=\sqrt{2} \sin ^{-1}(\sin x) \\ &\sqrt{2}|\cos x|=\sqrt{2} \sin ^{-1}(\sin x) \\ &\sqrt{2}(-\cos x)=\sqrt{2}(\pi-x) \\ &\cos x=-\pi+x \end{aligned}

It gives two real solutions on interval  \left(\frac{\pi}{2}, \pi\right)

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads