Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.13 Question 5  Maths Textbook Solution.

Answers (1)

Given:
\cos^{-1}\frac{12}{13}+\sin^{-1}\frac{3}{5}               
Hint:
First, we convert \cos^{-1} to \sin^{-1} and then use \sin \left ( a+b \right ) formula.
Solution:
Let          a= \cos^{-1}\frac{12}{13} and b= \sin^{-1}\frac{3}{5}
Finding \sin a , \cos a.
Let          a= \cos^{-1}\frac{12}{13}
         \cos a= \left (\frac{12}{13} \right )
We know that
               \sin a= \sqrt{1-\cos ^{2}}a
                          = \sqrt{1-\left ( \frac{12}{13} \right )^{2}}
                           = \sqrt{\frac{25}{169}}
                           = \frac{5}{13}
Again, finding \sin b, \cos b
Let          b= \sin^{-1}\left ( \frac{3}{5} \right )
         \Rightarrow \sin b= \frac{3}{5}
We know that,
                \cos b= \sqrt{1-\sin ^{2}b}
         \Rightarrow \cos b= \sqrt{1-\left ( \frac{3}{5} \right )^{2}}
                           = \sqrt{\frac{16}{25}}= \frac{4}{5}
                  \cos b= \frac{4}{5}
We know that,
                \sin \left ( a+b \right )= \sin a\cos b+\cos a\sin b
Putting, \sin a= \frac{5}{13},\cos a= \frac{12}{13}
                \sin b= \frac{3}{5},\cos b= \frac{4}{5}
We have,
                \sin \left ( a+b \right )= \frac{5}{13}\times \frac{4}{5}+\frac{12}{13}\times \frac{3}{5}
                                       = \frac{20}{65}+\frac{36}{65}
                   \sin \left ( a+b \right )= \frac{56}{65}
                a+b =\sin^{-1} \frac{56}{65}
Putting the value of a,b
                \cos^{-1}\frac{12}{13}+\sin^{-1}\frac{3}{5}= \sin^{-1}\frac{56}{65}
                LHS=RHS
Hence proved.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads