Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.11 Question 3 Subquestion (iii) Maths Textbook Solution.

Answers (1)

Answer:
x=\left ( \frac{-1}{2} \right ),\left ( \frac{1}{2} \right )
Hint:
Here, we can use the formula of union trigonometric function,
\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left ( \frac{a+b}{1-ab} \right )
Given:
We have to solve\tan^{-1}\left ( x-1 \right )+ \tan^{-1}x+ \tan^{-1}\left ( x+1 \right )= \tan^{-1}3x  and find the value of x.
Solution:
L.H.S=R.H.S
\tan^{-1}\left ( x-1 \right )+ \tan^{-1}x+ \tan^{-1}\left ( x+1 \right )= \tan^{-1}3x
Let’s use in sum formula,
\begin{aligned} &\tan ^{-1}\left(\frac{x-1+x+1}{1-\left(x^{2}-1\right)}\right)+\tan ^{-1} x=\tan ^{-1} 3 x \\ &\Rightarrow \tan ^{-1}\left(\frac{2 x}{2-x^{2}}\right)=\tan ^{-1} 3 x-\tan ^{-1} x \\ &\Rightarrow \tan ^{-1}\left(\frac{2 x}{2-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x}{1+3 x^{2}}\right) \\ &\Rightarrow \frac{2 x}{2-x^{2}}=\frac{3 x-x}{1+3 x^{2}} \end{aligned}
\begin{aligned} &\Rightarrow \frac{2 x}{2-x^{2}}=\frac{2 x}{1+3 x^{2}} \\ &\Rightarrow 1+3 x^{2}=2-x^{2} \\ &\Rightarrow 3 x^{2}+x^{2}=2-1 \\ &\Rightarrow 4 x^{2}=1 \\ &\Rightarrow x^{2}=\frac{1}{4} \\ &\Rightarrow x=0, \pm \frac{1}{2} \end{aligned}
x=\left ( \frac{-1}{2} \right ),\left ( \frac{1}{2} \right ), 0

 
Note: We must know the formula of Intersection.
\tan^{-1}A+\tan^{-1}B=\tan^{-1}\left ( \frac{A+B}{1-AB} \right )

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads