Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.12 Question 3 Subquestion (ii) Maths Textbook Solution.

Answers (1)

Answer: x= 1
Given:\cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0
Hint: \sin^{-1}\left (\frac{1}{2} \right )= \frac{\pi }{6}
\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
Solution: We have   \cos^{-1}x+\sin^{-1}\frac{x}{2}-\frac{\pi }{6}=0                            
\Rightarrow \left ( \frac{\pi }{2}-\sin^{-1} x\right )+\sin^{-1}\frac{x}{2}-\frac{ \pi }{6}= 0
\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{2}-\frac{ \pi }{6}= 0
\Rightarrow \sin^{-1}\frac{x}{2}-\sin^{-1}x+\frac{\pi }{3}= 0    
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}x-\sin^{-1}\frac{\sqrt{3}}{2}\; \; \; \; \; \; \left [ \because \sin \frac{\pi }{3}= \frac{\sqrt{3}}{2} \right ]
Using the formula,
\sin^{-1}x-\sin^{-1}y= \sin^{-1}\left [ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}} \right ]
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{\sqrt{3}}{2} \right )^{2}}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]                                                      
\Rightarrow \sin^{-1}\frac{x}{2}= \sin^{-1}\left [ x\sqrt{1-\left ( \frac{3}{4} \right )}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}} \right ]
\Rightarrow \frac{x}{2}= \frac{x}{2}-\frac{\sqrt{3}}{2}\sqrt{1-x^{2}}
\Rightarrow \sqrt{1-x^{2}}= 0
Squaring on both sides, we get
  \Rightarrow 1-x^{2}= 0
\Rightarrow x= \pm 1 [ As x=-1 is not satisfying the equation]
Hence x=1is the required answer.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads