Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Inverse Trigonometric Function Exercise 3.6 Question 1 Subquestion (i) Maths Textbook Solution.

Answers (1)

Answer: \frac{5\pi }{6}
Hints: The \cot ^{-1} function is defined as a function whose domain is R and the principal value branch of the function cot^{-1} is \left ( 0,\pi \right )
Thus,cot^{-1}: R \rightarrow (0,\pi )
Given:cot^{-1}(\sqrt{-3})
Solution:
Lety= cot^{-1}(\sqrt{-3}) \; \; \; \; \; \; \cdot \cdot \cdot \left ( 1 \right )                                                                                                                
cot\: y= -\sqrt{3}
cot\: y = - cot\frac{\pi }{6} \; \; \; \; \; \; [cot\:\frac{\pi }{6} =\sqrt{3} ] 
cot\: y = cot (\pi - \frac{\pi }{6} ) \; \; \; \; \; \; \; \; \; [ \because cot\left ( \pi - \theta \right ) = - cot\theta ]
cot\: y = cot\frac{5\pi }{6}         
y = \frac{5\pi }{6}cot^{-1}(\sqrt{-3}) = \frac{5\pi }{6}               (From equation 1)
\because The principal value branch of the function cot^{-1} is (0, \pi )
cot^{-1}(\sqrt{-3}) = \frac{5\pi }{6} \: \epsilon\: (0, \pi )
Hence the principal value of cot^{-1} (\sqrt{-3}) is  \frac{5\pi }{6}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads