Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise 18.11 Question 11 Maths Textbook Solution.

Answers (1)

Answer: -\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+C

Hint :- Use substitution method to solve this integral.

Given: \int \cot ^{5} x d x

Solution: Let I=\int \cot ^{5} x d x

Re-Write,\mathrm{I}=\int \cot ^{5} x d x

=\int \cot ^{3} x \cdot \cot ^{2} x d x

\mathrm{I}=\int \cot ^{3} x\left(\operatorname{cosec}^{2} x-1\right) d x                                        \text { (if, } \operatorname{cosec}^{2} x-\cot ^{2} x=1 \text { ) }

\begin{aligned} &I=\int\left(\cot ^{3} x \cdot \operatorname{cosec}^{2} x-\cot ^{3} x\right) d x \\ &I=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \cot ^{3} x d x \\ &I=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \cot ^{2} x \cot x d x \end{aligned}

\begin{aligned} &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int\left(\operatorname{cosec}^{2} x-1\right) \cot x d x \\ &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int\left(\operatorname{cosec}^{2} x \cdot \cot x-\cot x\right) d x \\ &\mathrm{I}=\int \cot ^{3} x \cdot \operatorname{cosec}^{2} x d x-\int \operatorname{cosec}^{2} x \cdot \cot x d x+\int \cot x d x \end{aligned}

Substitute,  cotx = t

\begin{aligned} &-\operatorname{cosec}^{2} x d x=d t, \text { then } \\ &I=\int t^{3}(-d t)-\int t(-d t)+\int \cot x d x \\ &=-\int t^{3} d t+\int t d t+\int \cot x d x \end{aligned}

=-\frac{t^{8+1}}{3+1}+\frac{t^{1+1}}{1+1}+\log |\sin x|+C                                                            \text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{c} \& \int \cot x d x=\log |\sin x|+c\right)

\begin{aligned} &=-\frac{1}{4} t^{4}+\frac{1}{2} t^{2}+\log |\sin x|+C \\ &=-\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+C \end{aligned}                                                        \left ( as,t=\cot x \right )

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads