Get Answers to all your Questions

header-bg qa

need solution for rd sharma maths class 12 chapter Indefinite integrals exercise 18.1 question 6

Answers (1)

Answer: 2\sqrt{x}+c

Hint: Use the formula of e^{\log x}=x

Given: \int \frac{e^{\log \sqrt{x}}}{x}dx

Solution: \int \frac{e^{\log \sqrt{x}}}{x}dx

                =\int \frac{\sqrt{x}}{x}dx                                            \left ( \because e^{\log x} =x\right )

                =\int \frac{1}{\sqrt{x}}dx=\int x^{\frac{-1}{2}}dx

                =\frac{x^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+c=\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c                    \left ( \because x^{n}=\frac{x^{n+1}}{n+1} \right )

                =2\sqrt{x}+c

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads