Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 33 Maths Textbook Solution.

Answers (1)

Answer:

a=\frac{1}{3} ; b=-1

Given:

\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C

Hint:

Using \int x^{n} d x.

Explanation:

Let I=\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x

         \begin{aligned} &=\int \frac{x^{2} x}{\sqrt{1+x^{2}}} d x \\ &=\int \frac{(t-1)}{\sqrt{t}} \cdot \frac{d t}{2} \end{aligned}                                                                        \text { [ Put } \left.1+x^{2}=t \Rightarrow x^{2}=t-1 \Rightarrow 2 x d x=d t\right]

          \begin{aligned} &=\frac{1}{2} \int \frac{t-1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int \sqrt{t} d t-\frac{1}{2} \int \frac{1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int(t)^{\frac{1}{2}} d t-\frac{1}{2} \int(t)^{\frac{-1}{2}} d t \\ &=\frac{1}{2}\left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]-\frac{1}{2}\left[\frac{(t)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}\right]+C \\ &=\frac{1}{2} \times \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} \times \frac{(t)^{\frac{1}{2}}}{\frac{1}{2}}+C \\ &=\frac{1}{3} t^{\frac{3}{2}}-t^{\frac{1}{2}}+C \end{aligned}

          =\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C

Acc. to given  I=a\left(1+x^{2}\right)^{\frac{8}{2}}+b \sqrt{1+x^{2}}+C

\Rightarrow \frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C

On comparing, we get

a=\frac{1}{3}, b=-1

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads