Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.11 Question 9 Maths Textbook Solution.

Answers (1)

Answer: -\frac{\cot ^{n+1} x}{n+1}+\mathrm{C}

Hint:Use substitution method to solve this integral.

Given:\int \cot ^{n} x \cdot \operatorname{cocec}^{2} x d x, \mathrm{n} \neq-1

Solution:let,\mathrm{I}=\int \cot ^{n} x \cdot \operatorname{cocec}^{2} x d x

Substitute,  cot x = t

\operatorname{cosec}^{2} x d x=\text { dt then }

\begin{array}{ll} \mathrm{I}=\int t^{n} \cdot \operatorname{cosec}^{2} \mathrm{x} \cdot \frac{d t}{-\operatorname{cosec}^{2} x} &\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \text { (if, } \cot \mathrm{x}=\mathrm{t}) \end{array}

=-\int t^{n}

=-\left[\frac{t^{n+1}}{n+1}\right]+C                                            \text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right)

\left.=-\frac{\cot ^{n+1} x}{n+1}+C \: \: \: \: \: \: \: \quad \text { (if, } \mathrm{t}=\cot \mathrm{x}\right)

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads