Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.21 Question 11 Maths Textbook Solution.

Answers (1)

Answer:  \sqrt{x^{2}+1}+\log \left|x+\sqrt{x^{2}+1}\right|+c

Given: \int \frac{x+1}{\sqrt{x^{2}+1}} d x

Hint: Simplify the given integration and solve it

Solution:

           \begin{aligned} &I=\int \frac{x+1}{\sqrt{x^{2}+1}} d x \\ &I=\int \frac{x}{\sqrt{x^{2}+1}} d x+\int \frac{1}{\sqrt{x^{2}+1}} d x \end{aligned}

           \begin{aligned} &I=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+1}} d x+\log \left|x+\sqrt{x^{2}+1}\right|+c \\ &I=I_{1}+\log \left|x+\sqrt{x^{2}+1}\right|+c \\ &I_{1}=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+1}} d x \end{aligned}

           \begin{aligned} &\text { Let } \\ &x^{2}+1=y \\ &2 x d x=d y \end{aligned}

          \begin{aligned} &I_{1}=\frac{1}{2} \int \frac{d y}{\sqrt{y}}=\frac{1}{2}\left(\frac{\sqrt{y}}{\frac{1}{2}}\right)+c \\ &I_{1}=\sqrt{y}+c \\ &I_{1}=\sqrt{x^{2}+1}+c \\ &I=\sqrt{x^{2}+1}+\log \left|x+\sqrt{x^{2}+1}\right|+c \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads