Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.8 question 11

Answers (1)

Answer:

        log\left | cos(\frac{\pi }{4}-x) \right |+C

Hint:

        sin^{2}x+cos^{2}x=1\; and\; sin\: 2x=2sin\: x\, cos\: x

Given:

        \int \! \sqrt{\frac{1-sin2x}{1+sin2x}}dx

Explanation:

        \int \! \sqrt{\frac{sin^{2}x+cos^{2}x-2sin\: x\: cos\: x}{sin^{2}x+cos^{2}x+2sin\: x\: cos\: x}}dx

    =\int \! \sqrt{\frac{(sin\: x-cos\: x)^{2}}{(sin\: x+cos\: x)^{2}}}dx

    =\int \! \sqrt{(\frac{sin\: x-cos\: x}{sin\: x+cos\: x}})^{2}dx

    =\int \! {\frac{sin\: x-cos\: x}{sin\: x+cos\: x}}dx

    =\int \!\frac{\frac{sin\: x}{cos\: x}-\frac{cos\: x}{cos\: x}}{\frac{sin\: x}{cos\: x}+\frac{cos\: x}{cos\: x}}dx

    =\int \!\frac{tan\: x-1}{tan\: x+1}dx

    =\int \!\frac{tan\: x-tan\frac{\pi }{4}}{1+tan\: x\: tan\frac{\pi }{4}}dx                    [tan\frac{\pi }{4}=1]

    =\int \! tan(x-\frac{\pi }{4})dx

    =-\int \! tan(\frac{\pi }{4}-x)dx

    =-[-log\left | cos(\frac{\pi }{4}-x) \right |+C]

    =log\left | cos(\frac{\pi }{4}-x) \right |+C

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads