Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 44 Maths Textbbok Solution.

Answers (1)

Answer:

I=\frac{1}{4} \tan ^{-1}\left(x+\frac{1}{2}\right)+c

Given:

\int \frac{1}{4 x^{2}+4 x+5} d x

Hint:

To solve this equation we will use split term method.

Solution: 

I=\int \frac{d x}{4 x^{2}+4 x+5}

   I=\int \frac{d x}{4\left(x^{2}+x\right)+5}

I=\int \frac{d x}{4\left(x+\frac{1}{2}\right)^{2}+4}                                        \left[\because\left(x^{2}+\frac{1}{2}\right)^{2}=x^{2}+\frac{1}{4}+\frac{2 x}{2}=x^{2}+x+\frac{1}{4}-\left(\frac{1}{4}\right)\right]

I=\frac{1}{4} \int \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+(1)^{2}}

I=\frac{1}{4} \tan ^{-1} \frac{\left(x+\frac{1}{2}\right)}{1}+\mathrm{c}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads