Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Indefinite Integrals exercise 18.8 question 49 maths textbook solution

Answers (1)

Answer:

        log\left | sin(x+\frac{\pi }{6})sin(x-\frac{\pi }{6}) \right |+C

Hint:

        sin(A+B)=sinAcosB+cosAsinB

Given:

        \int \! \frac{sin2x}{sin(x-\frac{\pi }{6})sin(x+\frac{\pi }{6})}dx

Explanation:

        \int \! \frac{sin[(x-\frac{\pi }{6}+\frac{\pi }{6}+x)]}{sin(x-\frac{\pi }{6})sin(x+\frac{\pi }{6})}dx

        \int \! \frac{sin[(x-\frac{\pi }{6})+(x+\frac{\pi }{6})]}{sin(x-\frac{\pi }{6})sin(x+\frac{\pi }{6})}dx

        =\int \frac{\sin \left(x-\frac{\pi}{6}\right) \cos \left(x+\frac{\pi}{6}\right)+\cos \left(x-\frac{\pi}{6}\right) \sin \left(x+\frac{\pi}{6}\right)}{\sin \left(x-\frac{\pi}{6}\right) \sin \left(x+\frac{\pi}{6}\right)}

        =\int\! cot(x+\frac{\pi }{6})dx+\int \! cot(x-\frac{\pi }{6})dx

        =log\left | sin(x+\frac{\pi }{6}) \right |+log\left | sin(x-\frac{\pi }{6}) \right |+C

        =log\left | sin(x+\frac{\pi }{6})sin(x-\frac{\pi }{6}) \right |+C

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads