Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.11 Question 2 Maths Textbook Solution.

Answers (1)

Answer: \frac{1}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+C

Hint :- Use substitution method to solve this integral.

Given :-   \int \tan x \cdot \sec ^{4} x d x

Sol : -  Let  I=\int \tan x \sec ^{4} x d x

Re-Write \mathrm{I}=\int \tan x \sec ^{2} x \cdot \sec ^{2} x d x

\mathrm{I}=\int \tan x\left(1+\tan ^{2} x\right) \sec ^{2} x d x                        \text { (if, } \left.\sec ^{2} x=1+\tan ^{2} x\right)

\mathrm{I}=\int\left(\tan x+\tan ^{3} x\right) \sec ^{2} x d x

Substitute \tan x=t \rightarrow \sec ^{2} x d x=d t then

\mathrm{I}=\int\left(\mathrm{t}+t^{3}\right) \sec ^{2} x \frac{d t}{\sec ^{2} x} \quad \text { (if, } \tan \mathrm{x}=\mathrm{t} \text { ) }

    =\int\left(\mathrm{t}+t^{3}\right) d t=\int \mathrm{t} d t+\int t^{3} d t

    =\frac{t^{1+1}}{1+1}+\frac{t^{3+1}}{3+1}+C                                        \text { (if, } \left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{C}\right)                        (i)

  I=\frac{t^{2}}{2}+\frac{t^{4}}{4}+C

I=\frac{\tan ^{2} x}{2}+\frac{\tan ^{4} x}{4}+\mathrm{C}                        \text { (if, } t=\tan x)

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads